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Compression of a thin, metallic cylindrical shell at collapse rates of ~ i0 cm/Bsec 
is of interest from the viewpoint of a number of physical problems, including the problem 
of exciting a pulsed thermonuclear reaction. Such velocities correspond to energy densities 
in the shell of E >--~ 5 MJ/g. Two means of introducing the energy exist in an electrodynamlc 
method of shell compression are as follows: compression by a magnetic field and extraction 
of Joulean heat with subsequent transformation into kinetic energy. The process actually 
proceeds simultaneously by both means, although the leading role in the different stages of 
compression can be played by first one, then the other factor. 

Let us estimate the possible shell dimensions. It follows from the requirement of 
uniformity of the motion that the initial shell radius ro should not exceed half its length 
significantly. If the ratio of thickness to ro is within the limits 0.01-0.i, then the total 
energy reserve in a copper shell is (10-100)ro s for ~ ~ 5 MJ/g. Let % 20% of the energy W0 
initially stored in the source be transferred successfully to the shell; then 

r o <~ 0.t ~ (2 - -  20) Wo. 

For Wo~25 MJ the shell radius should be ro~l cm. The time of energy absorption by the 
shell t e should be less than its collapse. For a collapse rate of ~ i0 cm/psee, this results 
in the need to assure te~0.1 ~sec. 

Therefore, the problem exists of extracting an energy densityof~ 5MJ/ginashellofup to 
2-cm size in a time~0.1 Bsec. Let us estimate the prospects of using different electrical 
engineering circuits for these purposes. 

i. Estimates of the Shell Joulean Energy in Circuits with Lumped Inductance L and 

Capacitance C 

Let us first examine the relationship between the time t b and tt, where t b is the time 
from the beginning of current passage over the conductor to the time of the explosion and t e 
is the characteristic time of explosion of the wire. It is known [I] that for an LC-loop 
(the loop resistance is <VL~ ) the explosion occurs near the fourth period upon compli- 

ance with the condition* 

1 tbi~ ' (1.1) 

where I e is the current at which the explosion starts; S, wire cross-sectlonal area; A, a 
constant equal to 2000 MA2"psec/cm 3 for copper, for example. It can be shown that (i.i) can 
be rewr:itten in the form 

S ~ = n%Ie; (i .2) 

for a broad circle of dependences I(t), where q varies within the limits lO-~--lO-S)/~. In 
the case of an RC loop, when R >VL-~, the relatiouship 

l ~ = t . 6 .106tbU~ 

*The following units are used everywhere in the formulas: cm, g, ~sec, MJ, MA, }IV, fl, 
pH, ~F. 
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is obtained analogously to (1.2). The fact that the time of the explosion is determined by 
the length rather than the section of the wire for a given initial voltage Uo is of interest. 

Experiments and computations [2] show that the average wire resistance within the time 
of the explosion t e approximately equals 

Re N 300 Ro, (1.3) 

where Ro is the initial resistance. In fact, the resistance certainly varies during the ex- 
plosion and depends on the wire and loop parameters. However, relationship (1.3), true in 
order of magnitude, can be used for estimates of t e. 

For the case of inductive storage, the Joulean energy absorbed by the wire can be 
written in the form 

Lq ( 2Re 
W I =--g-a,  where a = l - - e x p  - - T t ) .  

Denoting the Joulean energy density in the wire by ej and using (1.2) and (1.3), we have 

te ~ In (t - -a)  3. t04~le I t b. 
2a 

As has already been said, n ~ i0 -~. The quantity -- in(l -- a)/2a remains close to I in a 
broad range of variation of a. Therefore, the expression governing the relationship between 
t e and t b has the form 

te ~. 3r b. (1.4) 

For a RC loop the relationship similar to (1.4) is written in the form 

te ~ I04~ %- ( 1 . 5 )  
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It is seen from (1.4) and (1.5) that the ratio te/t b will be greater, the greater the energy 
density in the wire obtained during the explosion. Sharpening the pulse (t e < tb) is pos- 
sible for inductive storage only for Ej ~0.3 MJ/g. In ordinary experiments on the electrical 
explosion of wires gj ~0.015 MJ/g, and te/t b ~0.05. For the energy densities cj~SMJ/g 
interesting us, we should expect te/t b ~ i0. 

Let us now examine the question of the reality of obtaining the ej needed in an LC 
loop. If it is required that a significant fraction of the energy stored in the condensers 
up to the time of the explosion go to the inductance, then it follows from (1.4) that it is 
impossible to realize an explosion with the energy density needed within the first half-period 
Attempts to obtain the needed parameters of the explosion for a fluctuating current appears 
to be unreal primarily because a loop with an oscillation frequency of tens of megahertz for 
an energy reserve of more than a megajoule would be required for this. in addition, the 
fluctuating mode of the current passing through the plasma being dissipated should result in 
magnification of the instability of shell motion. 

A circuit with a commutator, which first permits a slow current build-up in the induc- 
tance, and then switches it to the shell being exploded, is also not promising According 
to (1.4), it would be required from such a commutator that it magnify its resistance more 
strongly than the shell itself in a time less than tb~0.1 t e ~ 0.01 ~sec, Examination of 
an RC loop results in the same deduction. In this case, for the explosion to occur with a 
sufficient current, the current front should be commensurate with t b ~ 10-~te ~ 10 -5 ~sec 
(see (1.5)). 

Therefore, none of the circuits considered permits obtaining the needed Joulean energy 
density for the shell. 

2o Estimates of the Shell Kinetic Energy in Circuits with Lumped L and C 

Now, let us consider the possibility of obtaining the requisite shell kinetic energy 
density e k when it is compressed by a magnetic field in a loop with lumped L and Co We con- 
sider the shell thin and made from an incompressible material. Then the equation of shell 
motion is written in the form 

d2rb t0-212 (2 .I) 
= d)' 

where r b is the outer shell radius, I, current through the shell~ ro and r,, initial values 
of the outer and inner shell radii; and y, shell density. 

The equation for the electrical loop has the form 

t 

y dI d t Idt + L (LoI) ---- Uo, Lo ---- 2-10-8l In ~ ,  -~- ~T-F~ -- (2.2) 
0 

where C and L are the capacitance and inductance of the loop (excluding the shell); Lo and 
l, shell inductance and length; and FT, radius of the reverse current conductor. 

Let us introduce the dimensionless quantities 
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1 / : ~ ' ~  (r2o --  r~) 
0 = t / 1 / 2 . t O - 3 l C ,  x = rb/ro, J = 1/223r~ I /  Ic ' 

k r O -  r ,  1C [drb_~ 
~- ro ' z = ( L  + Lo)/2" iO-al,  (o----500r~"~- ] �9 

The last quantity characterizes the dimensionless energy density. 
equations 

z ~ = - - J 2 ,  r 

from (2.1) and (2.2). 
form x = i, J = O, dx/dO = O, dJ/dO = yo. 

We obtain the system of 

J = O, (2.3) 

The initial conditions for this system are written for 0 = 0 in the 
Starting from the fact that for t = 0 

dI /d t  = Uo/(L + Lo), 

we obtain . . . . .  " 
5.7.10 -~ UoC 

System (2.3) was solved on an electronic computer. The count was made to x = /k(2 -- k) 
(shell total compresslon)o The shell energy head after the first half-period is of no in- 
terest, consequently, the count is cut off for J = 0. The parameters z, k, y were varied in 
the computations, and the maximum of m(e) was determined. The dependences of ~ on z are 
presented in Fig. i for different k and Yo. For zy > i000 these dependences are approxi- 
mated with an error < 10% by the formula 

o) = 6.4y lg (0.24/k). 

Returning to the dimensional variables, we obtain that upon conserving the condition 

UoC 
4  >5.1o, Vk (2 - k) (2.5) 

the energy density will equal 
0,24 

6"to-auo lg k 
ek~ , (2.5) L, V~ (2 --)~) 

where L , = L + 2.10 "s I In(rT/ro ) is the total loop induction at the initial time, If con- 
dition (2,4) is not satisfied, then Sk turns out to be less than the quantity defined by 
(2,5). 

It follows from (2,5) that if k > 10 -3 , then c k < 0.5Uo/L k and to obtain Ck~5MJ/g 
the initial derivative of the current should be greater than 10MA/~sec. Let us note that 
the requirement (2.4) for such a derivative reduces to Wo~ ~ 2 I0 L,ro. ~f ro~l cm and Wo~ 
10M~/g, then the initial loop inductance should be L, ~ 10-a ~H. The production of capac- 
itive batteries with such parameters is scarcely possible. 

Therefore , circuits with lumped L and C cannot apparently assure the necessary shell 
energy density of both Joulean and that obtained because of acceleration by a magnetic field. 

3, Estimate of the Prospects of Using Lines with Distributed Parameters 

Let us consider the circuit displayed in Fig~ 2a, Similarly to [3], n parallel lines 
i are connected to the load 4 by this circuit. In our case, this connection is made through 
a collector 2 represented in the form of two concentric hemlspheres, rk, radius of the outer 
hemisphere; and d, gap magnitude, A discharger 3 is placed at the discontinuity of the inner 
hemisphere. Each llne is two coaxial tubes with inner rt and outer r2 radii and length lo. 
The gap between the tubes is filled with a dielectric with the permittivity ~, The gap be- 
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tween the collector hemispheres is separated by the insulators 5 from the gaps between the 
line tubes and is filled with a dielectric with permittivity %1. 

If the time of electromagnetic wave passage in the collector t k ~ 8.6"10 -5 r~ is much 
less than the time of the process under consideration, then for the time < 6"10 -~ ~o/-~ the 
equivalent circuit of the apparatus can be represented in the form shown in Fig. 2b. The 

60 r~. 
equalsinternal source resistance is R -----~ |n--rl, and the collector inductance app=oximately 

Lk~ 2.t0-3-~In r k 

The collector gap should sustain the voltage Uo. We shall consider a mean electric field 
intensity % 1.5 MV/cm allowable in the collector insulator; then d = 0.6 Uo. In order 
for the gap in the lines to sustain the voltage Uo it is necessary to have ra>~r~ exp(Uo/ 
riEo), where Eo is the allowable field intensity in the substance filling the line. The 
quantity of lines is hence determined by the collector area (we shall later consider the 
lines to fill 0.75 of the collector area). 

Let the time of the process be T and t k % 0.i T, then we obtain the following expres- 
sion for ~he system wave resistance: 

2-9"lO-~Uorl ( 2Uo 
R (rl) = EoT~ V~ exp \rle----o/. 

The minimal value of the resistance has the form 

t,6.10-aU~ U o 
min  R (rl)  -= E~T2 .V~ p for r 1 = 2 ~o'  r~ = t ,65 r  1. 

Let us take Zo = 1.5"I0~T /~. We shall consider the lines filled with water with @ = 80 
and Eo = 0.3 MV/cm. Then we obtain the following system of relationships 

lo = i - 7 " i 0 S T ,  r k =  1200 T,  

r 1 = 6.7 Uo, L k =  - - i ,  2 T in  ( i  - -  5.iO-4Uo/T)~ ( 3 . 1 )  

r~ = 1t  Uo, R = 2.10-4( Uo/ T) 2, 
n = 2,2.10~(T/Uo)2~ Wo = t . 2 . 1 0 a T a  

to select the apparatus dimensions for given T and Uo, where Wo is the electric energy stored 
in the lines. 

As an illustration, let us present an example in which T = 0.2 ~sec and Uo = 2 MV. On 
the basis of (3.1), the apparatus should be 200 parallel lines with the dimensions rl ~13 
cm, r2 ~ 22 cm, and lo ~ 350 cm. The lines are connected to a collector with r k ~ 250 cm and 
L k ~ 0.0012 ~H. The energy stored in the lines is Wo ~ i0 MJ, and the wave resistance 
is R~0.02 ~. 

Let us consider Joulean heating and magnetic field compression of the shell included 
in an apparatus of such kind. We consider the shell incompressible, as before, but to have 
a finite (varying with time) thickness. The equation of motion for the centers of mass of 
the sectorial shell elements is written similarly to (2.1). Let us introduce the variable 

r~ " ( 3 . 2 )  . 

Because of the incompressibility of the shell material, its inner radius is r e = xr b. 
the outer radius the equation of motion is rewritten in the form 

r b-f~ = (I -- x) ~ dt I 
2 .7 . i0 -a ( i  --bx)~ I ~ ] 

_ - x 3 )  

F o r  

( 3 . 3 )  
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The specific kinetic energy of the shell equals 

(___t %y 
e k =  0"2\t + x "~i-] " (3.4) 

In connection with (1.4), the shell resistance can be considered constant 

10-4  Rr = 1.7. ~ .  (3.5) 

The shell inductance is comprised of t he  outer L b and inner L e. 
is determined by the magnetic field in the space between r b (t) 
the inductance is in Lk, then 

L b = 2 . t0  -a l in (1/rb). 

If it is considered that L b 
and r = l, while the rest of 

(3.6) 

In determining L e we shall consider the current distributed uniformly over the shell. Let 
us note that such a consideration is justified by the fact that t b << te, and therefore, the 
shell conductivity is low and the skin layer conductivity is large during the whole process 
under consideration. Then for the internal inductance we obtain 

L e = t O - 3 /  t + l _ ~ l n x  �9 (3.7) 

Taking (3 .5 )  and (3 .7 )  i n t o  a c c o u n t ,  we w r i t e  the  e q u a t i o n  o f  t h e  loop 

( t.67.10-4/ 4.i0-~/ drk 1 
u~ - ,: +  bT: --- 7 3) : �9 + R: 

d-Y= ( 2x' :b~ (3.8) 
L b + t0-~l i ~ t -- x - - - -5  In z -i- 2 In 

We obtain the following equation for the specific Joulean energy 

d-'F = 5.6. t0 -8 
\ 0  . /  

(3.9) 

Equations (3.3), (3.8), and (3.9) together with the relations (3.2) and (3.4) yield a com- 
plete system coverning the processes in the electrical loop, the shell motion, and the set 
of Joulean and kinetic energies of the shell. The initial conditions for this system are 
written in the form r b = ro, I = 0, sj = 0 at t = 0. 

The system was computed on an electronic computer. The computations were performed 

up to the time of total compression of the shell, i.e., to tc, for which r b V r ~ 2 = o - - r . .  By 

iteration, the parameter T in (3.1) was selected in such a way that the t c obtained in the 
computations equaled T. The parameters k, Z, ro and Uo were variated. The dependences of 
the Joulean sj and kinetic g k energy densities obtained as a result of the computations de- 
scribed are presented in Fig. 3, as is also that for the required energy store in the lines 
Wo on the shell length I. 

The results of such computations are in the nature of very approximate estimates and 
cannot pretend to any accuracy; however, they apparently yield a number of qualitative 
regularities. The abrupt drop in the maximum energy density as the relative shell thickness 
increases is evident. Thus, an increase in k from 0.005 to 0.I reduces the maximum E k ap- 
proximately 4 times. The voltage to which the lines are charged affects the energy density 
much more weakly. The computations did not disclose any essential dependence of ej on Uo. 
The quantity e k has a weak maximum in the area of Uo = 2 MV. As the shell length increases, 
ej drops but e k grows slightly or has a maximum at medium lengths I ~ Z cm. Naturally the 
energy store required grows with the increase in I. Upon conserving the length while the 
radius increases, ej drops sharply but E k grows. Let us note that, in general, the less the 
shell thickness, the greater the fraction of energy density in ej. It is seen from Fig. 3 
that the values of the energy density attain several megajoules per gram for small k. 
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The considerably greater prospects for applying systems of lines with distributed 
parameters as compared with the other schemes considered can be considered the general de- 
duction from the estimates presented. 
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EQUATION OF STATE OF HYDROGEN UP TO i0 MBAR 

V. P. Kopyshev and V. V. Khrustalev UDC 536.71 

The problem of calculating the equation of state of hydrogen in its exact formulation 
is insoluble by contemporary methods, and therefore it is necessary to resort to physical 
models or formal interpolations. One such model, the compressible covolume model (CCM), was 
formulated in [i] under another name. 

The "covolume" V ~ (a function of the pressure p) is a synonym for the "elastic volume" 
of [i]. In the present article the CCM is generalized to the case of a nonideal plasma,the 
covolumes of the molecular and atomic phases of hydrogen are constructed mainly on the basis 
of experimental data, and the complete equation of state of hydrogen up to a pressure of 
I0 Mbar is calculated in the temperature range T above 100~ for p < I0 kbar, and above the 
Debye temperature @(p) for p > i0 kbar. 

Assuming the results and notation of [i], we note here only the generalization to the 
case of a plasma. There are five kinds of particles, differing in the index n: molecules 
H2 (n = m), atoms H (n = a), ions Ha + (n = i), protons H + (n = p), and electrons e (n = e); 
the u n are the concentrations of the particles, and the V~ (p) are the covolumes. For mol- 
ecules and atoms the covolumes are identified with the zero isotherms (T = 0) of the corre- 
sponding phases. According to estimates in [2] the Coulomb field of the charged particles 
is strongly self-screened, and can be neglected~ 

Electrons are formed as a result of the ionization of atoms or molecules. Strictly 
speaking, the very idea of ionization becomes indefinite when the particles are "close"; 
rather, one should speak of the excitation of electrons, of the removal of their degeneracy. 
On the other hand, when the temperature is lowered, the degeneracy of excited electrons 
shows up in the fact that they "sit" in orbits around protons or ions, forming neutral atoms 
or molecules. In accord with the fundamental idea of the additivity of free and elastic 
volumes [i], we add to the free volume ~pRT/p of electrons formed in the H = H + + e reaction 
the elastic volume upVa ~ (p). At high temperatures there is no degeneracy, and only the 
first term is importantl; at low temperatures total degeneracy is approached, and only the 
second term is important. Similarly, for the H2 = H~ + + e reaction we add ~iV~ (p) to 
~iRT/p. From the law of conservation of charge ~p + ~i = ~e. 

We assume that in the equations from [i] an ideal electron gas (ionized or excited) 
has a Maxwell--Boltzmann distribution. Then the form of the CCM equations remains unchanged 
for a plasma if we formally supplement the definitions of the covolumes of charged particles~ 
O O O O O 

Vp = Va, V i = Vm, V e = 0. 

J 
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